Сети FDDI и высокоскоростные ЛВС.
FDDI (Fiber Distributed Data Interface) — распределенный интерфейс передачи данных по волоконно-оптическим каналам, является высокоскоростной волоконно-оптической системой со скоростью передачи данных 100 Мбит/с. Сеть поддерживает метод доступа маркерное кольцо, но в отличие от Token Ring, система FDDI использует для передачи данных не одно кольцо, а два, передача информации по которым осуществляется в противоположных направлениях, причем второе кольцо является резервным (рис. 43, а).
Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит минимум из двух двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое-вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.
В случае разрыва по каким-либо причинам первого кольца информация считываться со второго, что увеличивает надежность работоспособности сети. Если произошел разрыв сразу обоих колец в одном и том же месте, т. е. возможность с помощью специальных переключателей объединить два кольца в одно (рис. 43, б).
- preamble - заголовок подготавливает каждую станцию для приема прибывающего блока данных.
- start delimiter - ограничитель начала указывает на начало блока данных. Он содержит сигнальные структуры, которые отличают его от остальной части блока данных.
- frame control - поле управления блоком данных указывает на размер адресных полей, на вид данных, содержащихся в блоке (синхронная или асинхронная информация), и на другую управляющую информацию.
- destination address - также, как у Ethernet и Token Ring, размер адресов равен 6 байтам. Поле адреса назначения может содержать односоставный (единственный), многосоставный (групповой) или широковещательный (все станции) адрес, в то время как адрес источника идентифицирует только одну станцию, отправившую блок данных.
- data - информационное поле содержит либо информацию, предназначенную для протокола высшего уровня, либо управляющую информацию.
- frame check sequence - также, как у Token Ring и Ethernet, поле проверочной последовательности блока данных (FCS) заполняется величиной "проверки избыточности цикла" (CRC), зависящей от содержания блока данных, которую вычисляет станция- источник. Станция пункта назначения пересчитывает эту величину, чтобы определить наличие возможного повреждения блока данных при транзите. Если повреждение имеется, то блок данных отбрасывается.
- end delimiter - ограничитель конца содержит неинформационные символы, которые означают конец блока данных.
- frame status - поле состояния блока данных позволяет станции источника определять, не появилась ли ошибка, и был ли блок данных признан и скопирован принимающей станцией.
Основные технические характеристики:
- Максимальное количество абонентов сети – 1000.
- Максимальная протяженность кольца сети – 20 километров.
- Максимальное расстояние между абонентами сети – 2 километра.
- Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).
- Метод доступа – маркерный.
- Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).
Как видим, FDDI имеет большие преимущества по сравнению со всеми рассмотренными ранее сетями. Даже сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети и допустимому количеству абонентов. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки. Отметим, что ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ).
Уже разрабатывается модель сети, предполагающая возможность передавать различную информацию по двум кольцам одновременно, делая оба кольца основными. При этом пропускная способность такой системы увеличивается в 2 раза без уменьшения надежности ее работы.
FDDI применяется для подключения оборудования, требующего широкой полосы пропускания от ЛВС. Непосредственно к сети FDDI могут быть подключены некоторые рабочие станции, требующие высоких скоростей обмена данными. Рабочие станции пользователей подключаются через многопортовые мосты FDDI-Ethernet. Мост осуществляет фильтрацию и передачу пакетов не только между FDDI и Ethernet, но и между различными Ethernet-сетями. Пакет данных будет передан только в тот порт, где находится узел назначения, сохраняя полосу пропускания других ЛВС. Со стороны сетей Ethernet их взаимодействие эквивалентно связи через магистраль (backbone), только в этом случае она физически существует не в виде распределенной кабельной системы, а целиком сосредочена в многопортовом мосту.
Хотя переход на новые высокоскоростные технологии, такие как Fast Ethernet и 100VG-AnyLAN, начался не так давно, уже находятся в разработке два новых проекта - технология Gigabit Ethernet и Gigabit VG, предложенные соответственно Gigabit Ethernet Alliance и комитетом IEEE 802.12.
Технология Gigabit Ethernet представляет собой дальнейшее развитие стандартов 802.3 для сетей Ethernet с пропускной способностью 10 и 100 Мбит/с. Она призвана резко повысить скорость передачи данных до 1000 Мбит/с, сохранив при этом совместимость с существующими сетями Ethernet, использующими метод случайного доступа к ЛВС.
Интерес к технологиям для локальных сетей с гигабитными скоростями повысился в связи с двумя обстоятельствами - во-первых, успехом сравнительно недорогих (по сравнению с FDDI) технологий Fast Ethernet и 100VG-AnyLAN, во-вторых, со слишком большими трудностями, испытываемыми технологией АТМ на пути к конечному пользователю.
Технология АТМ обладает многими привлекательными свойствами - масштабируемой скоростью передачи данных, доходящей до 10 Гб/с, отличной поддержкой мултимедийного трафика и возможностью работы как в локальных, так и в глобальных сетях. Однако, стоимость технологии АТМ и ее сложность не всегда оправданы. Вот для таких применений, в которых нужна в первую очередь высокая скорость обмена, а без других возможностей, предлагаемых АТМ, можно прожить, и предназначены активно разрабатываемые сегодня гигабитные варианты Ethernet и VG.
За комитетом 802.12 стоит, естественно, компания Hewlett-Packard, сотрудница которой и возглавляет сегодня этот комитет. К энтузиастам перевода технологии VG на гигабитные скорости относятся также компании Compaq Computer, Texas Instrument и Motorola.
В Gigabit Ethernet Alliance входят наряду с другими компании Bay Networks, Cisco Systems и 3Com.
Обе группы намерены широко использовать достижения технологии Fibre Channel, уже работающей с гигабитными скоростями. Во всяком случае, Fibre Channel со своим методом кодирования 8B/10B фигурирует как один из вариантов физического уровня для оптоволоконного кабеля.
Разрабатываемые предложения оставляют метод доступа в неизменном виде: CSMA/CD для технологии Gigabit Ethernet и Demand Priority для Gigabit VG.
В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды будет допускать длину связей до 25 метров на витой паре. В связи с такими серьезными ограничениями более популярны будут, очевидно, полнодуплексные версии гигабитного Ethernet`a, работающие только с коммутаторами и допускающие расстояние между узлом и коммутатором в 500 метров для многомодового кабеля и до 2 км для одномодового кабеля.
Появление первого проекта стандарта Gigabit Ethernet ожидается в начале 1997 года, а его окончательное принятие - вначале 1998 года.
Gigabit Ethernet Alliance предполагает, что стоимость одного порта концентратора Gigabit Ethernet в 1998 году составит от $920 до $1400, а стоимость одного порта коммутатора Gigabit Ethernet составит от $1850 до $2800.
Для технологии Gigabit VG предлагается реализовать скорость 500 Мб/с для витой пары и 1 Гб/с для оптоволокна. Предельные расстояния между узлами ожидаются следующие: для витой пары - 100 м, для многомодового оптоволокна - 500 м и для одномодового оптоволокна - 2 км.