Усилители напряжения, тока и мощности. Расчет параметров усилителей.
Часть I. Усилитель напряжения. Схема усилителя низкой частоты на биполярном транзисторе.
Усилительный каскад на биполярном транзисторе, включенном по схеме с ОЭ, является одним из наиболее распространенных асимметричных усилителей. Принципиальная схема такого каскада, выполненная на дискретных элементах, изображена на рисунке ниже.
В этой схеме резистор Rк, включенный в главную цепь транзистора, служит для ограничения коллекторного тока, а также для обеспечения необходимого коэффициента усиления. При помощи делителя напряжения R1R2 задается начальное напряжение смещения на базе транзистора VT, необходимое для режима усиления класса А.
Цепь RэСэ выполняет функцию эмиттерной термостабилизации точки покоя; конденсаторы С1 и С2 являются разделительными для постоянной и переменной составляющих тока. Конденсатор Сэ шунтирует резистор Rэ по переменному току, так как емкость Сэ значительна.
При подаче на вход усилителя напряжения сигнала неизменной амплитуды при различных частотах выходное напряжение в зависимости от частоты сигнала будет изменяться, так как сопротивление конденсаторов C1, C2 на разных частотах различно.
Зависимость коэффициента усиления от частоты сигнала получило название амплитудно-частотной характеристики усилителя (АЧХ).
Усилители низкой частоты наиболее широко применяются для усиления сигналов, несущих звуковую информацию, в этих случаях они называются, также, усилителями звуковой частоты, кроме этого УНЧ используются для усиления информационного сигнала в различных сферах: измерительной технике и дефектоскопии; автоматике, телемеханике и аналоговой вычислительной технике; в других отраслях электроники. Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ).
Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство.
Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы (колонки), наушники (головные телефоны); радиотрансляционная сеть или модулятор радиопередатчика. Усилитель низких частот является неотъемлемой частью всей звуковоспроизводящей, звукозаписывающей и радиотранслирующей аппаратуры.
Анализ работы каскада усилителя производят с помощью эквивалентной схемы (на рис. ниже), в которой транзистор заменен Т-образной схемой замещения.
В этой эквивалентной схеме все физические процессы, происходящие в транзисторе, учитываются при помощи малосигнальных Н-параметров транзистора, которые приведены ниже.
Для питания усилителей используются источники напряжения с малым внутренним сопротивлением, поэтому можно считать, что по отношению к входному сигналу резисторы R1 и R2 включены параллельно и их можно заменить одним эквивалентным Rб = R1R2/(R1+R2).
Важным критерием для выбора номиналов резисторов Rэ, R1 и R2 является обеспечение температурной стабильности статического режима работы транзистора. Значительная зависимость параметров транзистора от температуры приводит к неуправляемому изменению коллекторного тока Iк, вследствие чего могут возникнуть нелинейные искажения усиливаемых сигналов. Для достижения наилучшей температурной стабилизации режима надо увеличивать сопротивление Rэ. Однако это приводит к необходимости повышать напряжение питания Е и увеличивает потребляемую от него мощность. При уменьшении сопротивлений резисторов R1 и R2 также возрастает потребляемая мощность, снижающая экономичность схемы и уменьшается входное сопротивление усилительного каскада.
Часть II. Усилитель постоянного тока в интегральном исполнении.
Операционный усилитель (ОУ) в интегральном исполнении является наиболее распространенной универсальной микросхемой (ИМС). ОУ – это устройство с высокостабильными качественными показателями, которые позволяют производить обработку аналоговых сигналов по алгоритму, задаваемому с помощью внешних цепей.
- коэффициент усиления по напряжению стремится к бесконечности;
- входное сопротивление стремится к бесконечности;
- выходное сопротивление стремится к нулю;
- если входное напряжение равно нулю, то выходное напряжение также равно нулю Uвх = 0, Uвых = 0;
- бесконечная полоса усиливаемых частот.
Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловливающих наличие дрейфа нуля в УПТ. К ним относятся нестабильности источников питания, температурная и временная нестабильности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наибольшую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и нестабильность тока коллектора усилителя в режиме покоя изменениями Iкбо, Uбэо. Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо уменьшать коэффициент нестабильности Sнс. Абсолютным дрейфом нуля Uвых, называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведенного ко входу усилителя:
едр=Uвых / Ku
Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и эквивалентен ложному входному сигналу.
Способы уменьшения дрейфа нуля:
- Термостатирование. Схема помещается в термостат, где поддерживается постоянная температура.
- Температурная компенсация. Применяются все способы температурной компенсации нестабильности рабочего режима.
- Использование ООС.
- Применение специальных параллельно-балансных каскадов, имеющих малый дрейф нуля.
Усилители постоянного тока предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой в виде, изображённой на рисунке слева. Поскольку коэффициент усиления ОУ очень велик, то использование его в качестве усилителя возможно лишь при охвате его глубокой отрицательной обратной связью (при отсутствии ООС даже крайне малый сигнал "шума" на входе ОУ даст на выходе ОУ напряжение, близкое к напряжению насыщения).
Часть III. Усилители мощности.
- Входной каскад
- Промежуточный каскад
- Выходной каскад (усилитель мощности)
1. Трансформаторные усилители мощности.
Рассмотрим однотактный трансформаторный УМ, в котором транзистор включен по схеме с ОЭ (рис. слева).
Трансформаторы ТР1, и ТР2 предназначены для согласования нагрузки и выходного сопротивления усилителя и входного сопротивления усилителя с сопротивлением источника входного сигнала соответственно. Элементы R и D обеспечивают начальный режим работы транзистора, а С увеличивает переменную составляющую, поступающую на транзистор Т.
Поскольку трансформатор является нежелательным элементом усилителей мощности, т.к. имеет большие габариты и вес, относительно сложен в изготовлении, то в настоящее время наибольшее распространение получили бестрансформаторные усилители мощности.
2. Бестрансформаторные усилители мощности.
Рассмотрим двухтактный УМ на биполярных транзисторах с различным типом проводимости. Как уже отмечалось выше, необходимо увеличить мощность выходного сигнала без изменения его формы. Для этого берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала, как показано на рисунке ниже:
Если транзисторы обладают достаточно высоким значением крутизны, то возможно построение схем, работающих на нагрузку величиной единицы Ом без использования трансформаторов. Питается такой усилитель от двухполярного источника питания с заземленной средней точкой, хотя возможно построение схем и для однополярного питания.
Принципиальная схема комплементарного эмиттерного повторителя - усилителя с дополнительной симметрией - приведена на рисунке слева. При одинаковом входном сигнале через транзистор n-p-n-типа протекает ток во время положительных полупериодов. Когда же входное напряжение отрицательно, ток будет течь через транзистор p-n-p-типа. Объединяя эмиттеры обоих транзисторов, нагружая их общей нагрузкой и подавая один и тот же сигнал на объединенные базы, получаем двухтактный каскад усиления мощности.
Рассмотрим более подробно включение и работу транзисторов. Транзисторы усилителя работают в режиме класса В. В данной схеме транзисторы должны быть абсолютно одинаковы по своим параметрам, но противоположны по планарной структуре. При поступлении на вход усилителя положительной полуволны напряжения Uвх транзистор Т1, работает в режиме усиления, а транзистор Т2 — в режиме отсечки. При поступлении отрицательной полуволны транзисторы меняются ролями. Так как напряжение между базой и эмиттером открытого транзистора мало (около 0,7 В), напряжение Uвых близко к напряжению Uвх. Однако выходное напряжение оказывается искаженным из-за влияния нелинейностей входных характеристик транзисторов. Проблема нелинейных искажений решается подачей начального смещения на базовые цепи, переводящей каскад в режим АВ.
Для рассматриваемого усилителя максимально возможная амплитуда напряжения на нагрузке Um равна E. Поэтому максимально возможная мощность нагрузки определяется выражением
Можно показать, что при максимальной мощности нагрузки усилитель потребляет от источников питания мощность, определяемую выражением
Исходя из вышесказанного, получаем максимально возможный коэффициент полезного действия УМ: nmax = P н.max / P потр.max = 0,78.