Электронный осциллограф

10.03.2014 22:21
Устройство осциллографа
 
Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи; также измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране.
 
По назначению и способу вывода измерительной информации:
- осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.);
- осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).
 
По способу обработки входного сигнала
- аналоговый;
- цифровой
 
По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).
 
Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.
 
Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).
 
Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).
 
С помощью электронного осциллографа можно наблюдать форму электрического сигнала, что делает его незаменимым при наладке и исследовании радиоэлектронной аппаратуры. Кроме того, электронным осциллографом можно измерять напряжение в исследуемых цепях; при этом он практически не потребляет энергии от исследуемый цепи и может работать в широком диапазоне частот. Благодаря этим свойствам прибора его широко применяют не только в радиотехнике, но и в других областях научных исследований. 
 
Несмотря на разнообразие схем электронных осциллографов, они основаны на использовании электронно-лучевой трубки (ЭЛТ). Осциллограф с дисплеем на базе ЭЛТ состоит из электронно-лучевой трубки, блока горизонтальной развертки и входного усилителя (для усиления слабых входных сигналов). Также содержатся вспомогательные блоки: блок управления яркости, блок вертикальной развертки, калибратор длительности, калибратор амплитуды.
 
 
Рассмотрим типичную электронно-лучевую трубку с электростатическим управлением. Трубку откачивают до высокого вакуума, чтобы электроны могли двигаться без столкновения с молекулами воздуха (рис. 1).
 
 
Накаленный катод является источником электронов. Электроны летят вдоль оси трубки благодаря действию ускоряющего электрода или анода А, потенциал которого поддерживается положительным (несколько сотен или тысяч вольт) по отношению к катоду К.
 
 Анод в простейшем случае представляет собой круглый диск с отверстием, из которого выходит некоторое количество электронов в виде узкого пучка (электронного луча). Пучок, распространяющийся вдоль оси трубки, попадает на флуоресцирующий экран, где часть кинетической энергии электронов превращается в световую энергию, и появляется светящейся пятно. 
 
Катод окружен цилиндрическим электродом G, имеющим отрицательный потенциал по отношению к катоду. Электрод выполняет две функции: собирает электроны вдоль оси трубки и управляет (как и сетка в электронной лампе) количеством электронов, идущих от катода к аноду. В электронно-лучевой трубке количество электронов, зависящее от потенциала управляющего электрода, определяет яркость светящегося пятна на экране трубки. Катод, сетка и анод составляют так называемую "электронную пушку", или "электронный прожектор". 
 
В трубке простого устройства светящееся пятно на экране будет похоже скорее на светящийся диск, чем на точку. Это связано с действием сил взаимного расталкивания электронов в пучке и отклонением их от оси. Поэтому необходимо иметь устройство для превращения расходящегося электронного пучка в сходящийся. По аналогии с оптикой этот процесс называют фокусировкой. 
 
При электростатической фокусировке вводят два или более анода, причем потенциал второго анода более высокий, чем потенциал первого. Электрон, отклонившийся от оси электронной пушки, попадает в поле между двумя анодами, стремясь следовать в направлении линий электрического поля, т. е. он отклоняется внутрь по направлению к оси. Степень сходимости и, следовательно, положение фокуса можно менять изменением потенциала одного из анодов.
 
Светящееся пятно перемещают по экрану в соответствии с исследуемым напряжением. Электронный луч проходит между двумя парами отклоняющих пластин, к которым приложено напряжение. Одна пара пластин Х1 и Х2 создает поперечное электрическое поле, вызывающее отклонение луча в горизонтальном направлении. Другая пара пластин Y1 и Y2 создает вертикальное отклонение луча. Чувствительность к отклонению определяется смещением светящегося пятна на экране, вызванным разностью потенциалов между пластинами 1 В. Чувствительность обратно пропорциональна ускоряющему напряжению, поэтому желательно иметь низкое анодное напряжение. Однако существует противоположные требования: яркость пятна увеличивается при возрастании анодного напряжения. Чувствительность типичной осциллографической трубки на среднее напряжение несколько меньше 1 мм/В.