Электронные усилители. Назначение, классификация, параметры и модель усилительного каскада.

01.10.2013 21:49

    Усилитель электрических сигналов это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подве­денного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямо­угольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, опреде­ляющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону со­хранения энергии усилительное устройство должно включать в себя источ­ник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рис. 1.

Рисунок 1.  Обобщенная структурная схема усилителя.

 

    Электрические колебания поступают от источника сигнала на вход усилителяк выходу ко­торого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро - необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Рвх выходная мощность Рвых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Рвх < Рвых < РоСледова­тельно,усилитель это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала. Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполяр­ных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС). варикапов и других.

    Простейший усилитель содержит один усилительный элемент. В большинстве слу­чаев одного элемента недостаточно и в усилителе при­меняют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадомУсилитель состоит из активных и пассивных элемен­тов: к активным элементам относятся транзисторы, эл. микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляюще­го сигнала на входных электродах. Пассивными эле­ментами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необхо­димый размах колебаний, фазовые сдвиги и другие па­раметры усиления. Таким образом, каждый каскад усилителя состоит из минимально не­обходимого набора активных и пассивных элементов.

    Структурная схема типичного многокаскадного усилителя приведена на рис. 2.

Рисунок 2.  Схема многокаскадного усилителя.

 

    Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощно­сти (выходного каскада). Количество каскадов предварительного усиления оп­ределяется необходимым усилением. Входной каскад обеспечивает, при необ­ходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.

    Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.

    Источни­ками усиливаемых сигналов могут быть микрофоны, счи­тывающие головки магнитных и лазерных накопителей информации, различные преобразователи неэлектрических парамет­ров в электрические.

    Нагрузкой являются громкоговорители, электриче­ские двигатели, сигнальные лампы, нагреватели и т. д.Источники питания вырабатывают энергию с заданными параметрами — номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анод­ных цепях ламп; используется для поддержания задан­ных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.

 

Классификация усилительных устройств.

    Усилительные устройства классифицируют по различным признакам. Основными являются:  диапазон усиливаемых частот, функциональное назначение, характер и полоса усиливаемого сигнала. Основнымколичественным параметром усилителя является его коэффициент усиления (коэффициент передачи). Различают коэффициенты усиления напряжения Ku , тока Ki или мощности Kp .

    По виду усиливаемых электрических сигналов усилители подразделяют на усилители гармонических(непрерывных) сигналов и усилители импульсных сигналов.

    По ширине полосы пропускания и абсолютным значениям усиливаемых частот усилители подразделяются на следующие типы:

    - Усилители постоянного тока (УПТ) предназначены для усиления сигналов в пределах от низшей частоты  = 0 до верхней рабочей частоты . УПТ усиливает как переменные составляющие сигнала, так и его постоянную со­ставляющую. УПТ широко применяются в устройствах автоматики и вычислительной техники.

    - Усилители напряженияв свою очередь подразделяются на усили­тели низкой, высокой и сверхвысокой частоты.

По ширине полосы пропускания усиливаемых частот различают:

избирательные усилители (усилители высокой частоты - УВЧ), для которых действительно отношение частот  /1;

широкополосные усилители с большим диапазоном частот, для которых отношение частот  />>1(например УНЧ - усилитель низкой частоты).

    - Усилители мощности - оконечный каскад УНЧ с трансформаторной развязкой. Для того, чтобы мощность была максимальной Rвн. к Rн, т.е. сопротивление нагрузки должно быть равно внутреннему сопротивлению коллекторной цепи ключевого элемента (транзистора).

     По конструктивному исполнению усилители можно подразделить на две большие группы: усилители, выполненные с помощью дискретной технологии, то есть способом навесного или печатного монтажа, и усилители, выполненные с помощью интегральной технологии. В настоящее время в качестве активных элементов широко используются аналоговые интегральные микро­схемы (ИМС).

 

Показатели работы усилителей.

    Одним из основных показателей усилительного каскада является точностьвоспроизведения формы усиливаемого сигнала. Форма выходного сигнала отличается от формы входного сигнала из-за линейных и нелинейных искажений, вносимых усилителем.

    Линейные искажения возникают из-за реактивных элементов в схеме и определяются скоростью изменения сигнала во времени.

    К показателям работы усилителей относятся вход­ные и выходные данные, коэффициент усиления, диапа­зон частот, коэффициент искажений, КПД и другие па­раметры, Характеризующие его качественные и эксплуа­тационные свойства.

    К входным данным относятся номинальное значение входного сигнала (напряжения Uвх=U1тока Iвх=I1или мощно­сти Pвх=P1), входное сопротивление, входная емкость или ин­дуктивность; ими определяется пригодность усилителя для конкретных практических применений. Входное со­противление Rвх  в сравнении с сопротивлением источ­ника сигнала Rи предопределяет тип усилителя; в зави­симости от их соотношения различают усилители напря­жения (при Rвх >> Rи), усилители тока (при Rвх << Rиили усилители мощности (при Rвх = Rи). Входная ем­кость Свх, являясь реактивной компонентой сопротивле­ния, оказывает существенное влияние на ширину рабо­чего диапазона частот.

    Выходные данные — это номинальные значения выход­ного напряжения Uвых=U2, тока Iвых=I2, выходной мощности Pвых=P2 и выходного сопротивления. Выходное сопротивление дол­жно быть значительно меньшим, чем сопротивление на­грузки. И входное и выходное сопротивления могут быть активными или иметь реактивную составляющую (ин­дуктивную или емкостную). В общем случае каждое из них равно полному сопротивлению Z, содержащему как активную, так и реактивную составляющие

    Коэффициентом усиления называется отношение вы­ходного параметра ко входному. Различают коэффициенты усиления по напряжению Ku=U2/U1, по току Ki=I2/Iи мощности Kp=P2/P1.

 

Характеристики усилителя.

    Характеристики усилителя отображают его способность усиливать с определенной степенью точности сиг­налы различной частоты и формы. К важнейшим харак­теристикам относятся амплитудная, амплитудно-частот­ная, фазо-частотная и переходная.

Рис. 3. Амплитудная характеристика.

 

    Амплитудная характеристика представляет собой зависимость ампли­туды выходного напряжения от амплитуды подаваемого на вход гармонического колебания определенной частоты (рис. 3.). Входной сигнал изменяется от минимального до максимального значения, при­чем уровень минимального значения должен превышать уровень внутренних помех Uп, создаваемых самим уси­лителем. В идеальном усилителе (усилителе без помех) амплитуда выходного сигнала пропорциональна ампли­туде входного Uвых=K*Uвх и амплитудная характерис­тика имеет вид прямой линии, проходящей через начало координат. В реальных усилителях избавиться от помех не удается, поэтому его амплитудная характеристика от­личается от прямой.

Рис. 4. Амплитудно-частотная характеристика.

 

    Амплитудно- и фазо-частотная характеристики отражают зависимость коэффициента усиления от частоты. Из-за   присутствия в усилителе   реактивных   элементов сигналы разных частот усиливаются неодинаково, а вы­ходные сигналы сдвигаются относительно входных на различные углы. Амплитудно-частотная характеристика в виде зависимости  представлена на рисунке 4. 

    Рабочим диапазоном частот усилителя называют интервал частот, в пределах которого модуль коэффициента остается постоянным или изменяется в заранее заданных пределах.

    Фазо-частотной характеристикой называется частотная зависимость угла сдвига фазы выходного сигнала по отношению к фазе входного.

 

Обратные связи в усилителях.

    Обратной связью (ОС) называют связь между электрическими цепями, посред­ством которой энергия сигнала передается из цепи с более высоким уровнем сигнала в цепь с более низким его уровнем: например, из выходной цепи уси­лителя во входную или из последующих каскадов в предыдущие. Структурная схема усилителя с обратной связью изображена на рисунке 5.

Рис. 5. Структурная (слева) и принципиальная схема с отрицательной ОС по току (справа).

 

    Обратная связь может возникать в схеме через паразитные цепи, такая об­ратная связь называется паразитнойТак как паразитные связи, как правило, нельзя рассчитать, а они могут существенно ухудшить работу усилителя, по­этому паразитные связи усилителя ослабляют, чтобы они практически не ска­зывались на его свойствах. Обратная связь возникает также благодаря конст­руктивным особенностям и физическим свойствам усилительных элементов. Такую обратную связь называют внутреннейее усчитывают при моделирова­нии усилительных элементов. Внешняя обратная связь, искусственно введен­ная и правильно построенная, вводится для изменения свойств усилителя в же­лаемом направлении, придания ему определенных функциональных особенно­стей и для улучшения основных показателей его работы. Далее, по умолчанию, речь будет идти о внешней обратной связи.

    Передача сигнала с выхода на вход усилителя осуществляется с помощью четырехполюсника В. Четырехполюсник обратной связи представляет собой внешнюю электрическую цепь, состоящую из пассивных или активных, линей­ных или нелинейных элементов. Если обратная связь охватывает весь усили­тель, то обратная связь называется общей: если обратная связь охватывает от­дельные каскады или части усилителя, называется местной. Таким образом, на рисунке пред­ставлена структурная схема усилителя с общей обратной связью.

 

Модель усилительного каскада.

    Усилительный каскад - конструктивное звено усилителя - содержит один или более активных (усилительных) элементов и набор пассивных элементов. На практике, для большей наглядности, сложные процессы исследуют на простых моделях.

    Один из вариантов транзисторного каскада для усиления пере­менного тока приведен на рисунке слева. Транзистор V1 р-п-р типа вклю­чен по схеме с общим эмиттером. Входное напряжение база - эмиттер создается источником с ЭДС Еи внутренним сопротивлением Rисточника. В цепи базы установлены резисторы R1и R2. Коллектор тран­зистора соединен с отрицательным зажимом источника Eк через резисторы Rк и Rф. Выходной сигнал снимается с выводов коллектора и эмиттера и через конденсатор С2 поступает в нагрузку Rн. Конденсатор Сф совместно с резистором Rф образует -звено фильтра (положительную обратную связь - ПОС), который требуется, в частности, для сглаживания пульсаций питающего напряжения (при маломощном источнике Eк с большим внутренним сопротивлением). Так же, для большей стабильности устройства, в цепь эмиттера транзистора V1 (отрицательная обратная связь - ООС) можно дополнительно включить RC-фильтр, который будет припятствовать передачи части выходного сигнала обратно на вход усилителя. Таким образом, можно избежать эффекта самовозбуждения устройства. Обычно искусственно созданная внешняя ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот.